Septation, dephosphorylation, and the activation of sigmaF during sporulation in Bacillus subtilis.

نویسندگان

  • N King
  • O Dreesen
  • P Stragier
  • K Pogliano
  • R Losick
چکیده

Cell-specific activation of transcription factor sigmaF during sporulation in Bacillus subtilis requires the formation of the polar septum and the activity of a serine phosphatase (SpoIIE) located in the septum. The SpoIIE phosphatase indirectly activates sigmaF by dephosphorylating a protein (SpoIIAA-P) in the pathway that controls the activity of the transcription factor. By use of a SpoIIE-GFP fusion protein in time-course and time-lapse experiments and by direct visualization of septa in living cells, we show that SpoIIE is present in the predivisional sporangium, where it often localizes near both cell poles in structures known as E-rings. We also present evidence consistent with the view that SpoIIE is present in both progeny cells after polar division. These findings are incompatible with a model for the control of sigmaF activity in which the phosphatase is simply sequestered to one cell. Instead, we conclude that the function of SpoIIE is subject to regulation, and we present evidence that this occurs in two stages. The first stage, which involves the phosphatase function of SpoIIE, depends on the cell division protein FtsZ and could correspond to the FtsZ-dependent assembly of SpoIIE into E-rings. The second stage occurs after the dephosphorylation of SpoIIAA-P and is dependent on the later-acting, cell-division protein DivIC. Evidence based on the use of modified and mutant forms of the phosphatase protein indicates that SpoIIE blocks the capacity of unphosphorylated SpoIIAA to activate sigmaF until formation of the polar septum is completed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Prespore-specific gene expression in Bacillus subtilis is driven by sequestration of SpoIIE phosphatase to the prespore side of the asymmetric septum.

The spoIIE gene is essential for the compartment-specific activation of transcription factor sigmaF during sporulation in Bacillus subtilis. SpoIIE is a membrane protein that is targeted to the potential sites of asymmetric septation near each pole of the sporulating cell. The cytoplasmic carboxy-terminal domain of SpoIIE contains a serine phosphatase that triggers the release of sigmaF in the ...

متن کامل

Purification, kinetic properties, and intracellular concentration of SpoIIE, an integral membrane protein that regulates sporulation in Bacillus subtilis.

SpoIIE is a bifunctional protein which controls sigmaF activation and formation of the asymmetric septum in sporulating Bacillus subtilis. The spoIIE gene of B. subtilis has now been overexpressed in Escherichia coli, and SpoIIE has been purified by anion-exchange chromatography and affinity chromatography. Kinetic studies showed that the rate of dephosphorylation of SpoIIAA-P by purified SpoII...

متن کامل

Role of SpoVG in asymmetric septation in Bacillus subtilis.

Deletion of the citC gene, coding for isocitrate dehydrogenase, arrests sporulation of Bacillus subtilis at stage I after bipolar localization of the cell division protein FtsZ but before formation of the asymmetric septum. A spontaneous extragenic suppressor mutation that overcame the stage I block was found to map within the spoVG gene. The suppressing mutation and other spoVG loss-of-functio...

متن کامل

The kinase activity of the antisigma factor SpoIIAB is required for activation as well as inhibition of transcription factor sigmaF during sporulation in Bacillus subtilis.

The activity of the developmental transcription factor sigmaF in the spore-forming bacterium Bacillus subtilis is controlled by SpoIIAB, which sequesters sigmaF in an inactive complex. sigmaF is released from the SpoIIAB-sigmaF complex by the action of SpoIIAA, which triggers the dissociation of the complex. SpoIIAB is also a protein kinase that phosphorylates SpoIIAA on serine residue 58 (S58)...

متن کامل

Signalling network with a bistable hysteretic switch controls developmental activation of the sigma transcription factor in Bacillus subtilis.

The sporulation process of the bacterium Bacillus subtilis unfolds by means of separate but co-ordinated programmes of gene expression within two unequal cell compartments, the mother cell and the smaller forespore. sigmaF is the first compartment-specific transcription factor activated during this process, and it is controlled at the post-translational level by a partner-switching mechanism th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Genes & development

دوره 13 9  شماره 

صفحات  -

تاریخ انتشار 1999